Affine Weyl group symmetry of the Garnier system

نویسنده

  • Takao Suzuki
چکیده

In this paper, we show that the Garnier system in n-variables has affine Weyl group symmetry of type B (1) n+3. We also formulate the τ functions for the Garnier system (or the Schlesinger system of rank 2) on the root lattice Q(Cn+3) and show that they satisfy Toda equations, Hirota-Miwa equations and bilinear differential equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Painlevé Vi Systems in Dimension Four with Affine Weyl Group Symmetry of Types

We find and study four kinds of 6-parameter family of coupled Painlevé VI systems with affine Weyl group symmetry of types B (1) 6 , D (1) 6 and D (2) 7 . We also give an explicit description of a confluence to the Noumi-Yamada system of type A (1) 5 . 0. Introduction In 1912, considering the significant problem of searching for higher order analogues of the Painlevé equations, Garnier discover...

متن کامل

ar X iv : m at h - ph / 0 70 10 41 v 1 1 3 Ja n 20 07 Coupled Painlevé VI system with E ( 1 ) 6 - symmetry

We present an new system of ordinary differential equations with affine Weyl group symmetry of type E (1) 6 . This system is expressed as a Hamiltonian system of sixth order with a coupled Painlevé VI Hamiltonian. 2000 Mathematics Subject Classification: 34M55, 17B80, 37K10. Introduction The Painlevé equations PJ (J = I, . . . ,VI) are ordinary differential equations of second order. It is know...

متن کامل

2 YUSUKE SASANO Theorem 0

In this paper, we propose a 2-parameter family of coupled Painlevé II systems in dimension four with affine Weyl group symmetry of type D (2) 3. We also propose a 4-parameter family of 2-coupled D (2) 3-systems in dimension eight with affine Weyl group symmetry of type D In this paper, we present a 2-parameter family of 2-coupled Painlevé II systems with affine Weyl group symmetry of type D

متن کامل

ar X iv : m at h - ph / 0 70 10 41 v 2 1 9 A pr 2 00 7 Coupled Painlevé VI system with E ( 1 ) 6 - symmetry

We present an new system of ordinary differential equations with affine Weyl group symmetry of type E (1) 6 . This system is expressed as a Hamiltonian system of sixth order with a coupled Painlevé VI Hamiltonian. Introduction The Painlevé equations PJ (J = I, . . . ,VI) are ordinary differential equations of second order. It is known that these PJ admit the following affine Weyl group symmetri...

متن کامل

equations P II , P III , P IV , P V , and

We propose a quantization of the Painlevé system of type A (1) l studied by M. Noumi and Y. Yamada [13]. This quantization has the affine Weyl group symmetry of type A (1) l (l ≥ 2) as well as the Lax representation. For even l, the quantized system of type A (1) l can be obtained as the continuous limit of the discrete system constructed from the affine Weyl group symmetry of type A (1) l+1 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005